Alpino: A Wide Coverage Computational Grammar for Dutch

Gosse Bouma and Gertjan van Noord
Alfa-informatica, RUG

CLIN 00
Overview

- PIONIER project ‘Algorithms for Linguistic Processing’
- The Alpino grammar,
- Lexical resources,
- Construction of Dependency Trees,
- Treebank and evaluation,
- Future work.
Algorithms for Linguistic Processing

• Efficient processing and disambiguation of natural language,

• Develop wide-coverage Dutch grammar,

• Study disambiguation techniques,

• Evaluate coverage & disambiguation,

• (Efficiency & Finite-state approximations).
Grammar

- Lexicalized (HPSG-style) grammar,
- Extension of the NWO-TST (OVIS) grammar,
- Added rules for written language,
- Incorporated lexical entries based on Celex and Parole.
Rule Coverage

- Sentence types: declaratives, yes/no & WH-questions, topicalization, imperatives, subordinate clauses,

- NPs: relatives, sbar-complements, titles (minister zalm), measure phrases, temporal expressions, ...

- VP syntax: NP, PP, VP, SBAR complements, predicative phrases, adjuncts, verb clusters, particles, passives.

- Coordination of maximal projections (NP, PP, S, ...).
Inheritance in Rule Definitions

- 114 rules

- `pp --> p np is-a head-comps-struct`.

- `head-comps-struct` is-a `headed-struct`.

- `headed-struct` satisfies
 - `head-feature principle`,
 - `valence principle`,
 - `filler principle`.
Example Rule

\[\text{rule}(\text{pp}_p_\text{np}, \begin{bmatrix} \text{wh} & 1 \\ \text{slash} & 2 \\ \text{ppost} & \text{no} \\ \text{dt} & 3 \end{bmatrix}, \begin{bmatrix} \text{sc} & \langle 4 \rangle \\ \text{wh} & 1 \\ \text{prep} & 2 \\ \text{ppost} & \text{no} \\ \text{dt} & 3 \end{bmatrix}, \begin{bmatrix} \text{nform} & \text{\neg er} \end{bmatrix}) \].
Inheritance for Lexical Entries

- ‘toerekenen’ is-a trans-particle-verb
- trans-particle-verb is-a trans-verb
- trans-verb is-a np-subj-verb
- np-subj-verb is-a verb
- verb is-a lexical-sign.
- lexical-sign satisfies argument-realization.
Recursive Constraints & Co-routining

- Slash-introduction defined as a constraint on mapping from `DEPENDENTS (and SUBJ)` to `SUBCAT and SLASH` (Bouma, Malouf, Sag, 2001).

- Verb-raising verbs defined using argument-inheritance (append of `SUBCAT-lists`) (Bouma and van Noord, 97),

- Co-routining is used for implementation of such constraints (van Noord and Bouma, 1994).
\[
\text{realize-args}(\langle 2 | 1 \rangle, 3, 4).
\]
Lexical Resources

- Wide-coverage of lexicalist grammars requires detailed lexical info,

- We use existing lexical resources (Celex & Parole) to obtain morphological and subcategorization info.

- Currently, the system has approx. 150K (inflected) lexical entries.
Lexical Resources

- **Celex:**
 - 33K lemma’s for nouns, adjectives, adverbs, etc.,
 - 5800 lemma’s for trans & intrans (particle) verbs.

- **Parole:**
 - 1600 verbs with subcat-frames not covered by Celex,
 - 800 nouns with special subcat properties.

- **“Hand”:**
 - 800 hand-crafted lemma’s,
 - 4K proper names occurring in Eindhoven corpus.
Treebank

• A syntactically annotated corpus is useful for:
 ★ Grammar Debugging,
 ★ Evaluation,
 ★ Collection of statistical info.

• Using current grammar directly has disadvantages:
 ★ Grammars change,
 ★ Annotation is difficult for strings outside coverage,
 ★ Hard to compare with other systems,
Dependency Trees

- Provide a grammar independent level of representation,
- Suitable for (relatively) free-word order languages,
- Lexical Dep Relations are useful for data-driven, statistical, parsing (Collins 98),
- We adopt annotation format for Dutch developed in CGN project.
Head-driven DT construction

- Data-structure: feature for each Dep Rel,
- A lexical head subcategorizes for a specific set of dependents, each linked to a specific Dep Rel,
- In head-comps-structures, Dep Tree can simply be shared between mother and head.
\[
\text{deps} \left\langle \begin{array}{c} \text{pred} \\
\text{subj} \\
\text{lex} \\
\text{dt} \\
v \\
vdom \\
\end{array} \right\rangle \otimes \begin{array}{c} \text{case} \\
\text{acc} \\
\text{hwrk} \\
\text{vind} \\
\text{postag} \\
\text{verb} \\
\text{cat} \\
\text{inf} \\
\text{su} \\
\text{obj1} \\
\text{predc} \\
\text{mod} \\
\end{array} \right\rangle
\]

\[
\left\langle \begin{array}{c} \text{pred} \\
\text{subj} \\
\text{lex} \\
\text{dt} \\
v \\
vdom \\
\end{array} \right\rangle \text{, viden }\)
Chevrolet brengt voor 1970 een nieuw model uit:
Phrase Structure and Dep Trees

• DT-construction in the grammar:
 ★ coordination (not a regular headed-struct),
 ★ unbounded dependencies (not lexically headed),
 ★ modification (no lexical treatment of adjuncts).

• Structure of Dep Tree not always isomorphic to syntactic tree.
 ★ Example: Crossing Dependency Constructions.
Building a Treebank

- Thistle: editor for linguistic objects (Calder, 2000),
- Define a Thistle SPEC (XML DTD) for Dep Trees,
- Initial trees constructed with Alpino,
 - Parse input string,
 - Select (manually) best parse,
 - Store corresponding Dep Tree as XML
- Use Thistle to edit and correct parse results,
Using the Treebank

- Grammar Evaluation based on Dep Rel’s between lexical Heads (Carroll et al, 1999),
- Dep Tree defines as set of \langleHdWrd DepRel DepHdWrd\rangle, e.g.

 \langledat body wil \rangle
 \langlewil su ik \rangle
 \langlewil vc ontmoet \rangle
 \langleontmoet su ik \rangle
 \langleontmoet obj1 hem \rangle
Using the Treebank

- Parse results can be scored for precision and recall using lexically headed dependency relations,
- Useful during grammar development,
- Probabilities for lexical dependency relations can be estimated by parsing (unannotated) text,
- These can be used for disambiguation (i.e. to rank parse-results).
Conclusions

- Coverage: Combination of lexicalist HPSG-style grammar with existing lexical resources,
- Head-driven construction of Dependency Trees,
- Treebank construction,
- Grammar evaluation.
Future Work

• Expand syntactic coverage,

• Expand lexicon (use CGN lexical resources...).

• Expand treebank,

• Create parse selection tool for manual annotation,

• Build a statistical disambiguation model...