EDUCATION AND VOCABULARY

MULTIPLE REGRESSION IN ACTION
EDUCATION AND VOCABULARY

- 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988).
- Dutch children spend 5.5 hours/day in front of a screen (Valkenburg, 2013).
- Most of this input is in English.
- How much does education contribute?
Does the amount of time children are taught English weekly predict the size of their English vocabulary, or are there other factors – and if so, to what extent are they correlated with English vocabulary?
STUDY

• Participants
 • 72 Dutch children;
 • Primary school classes 5 and 6;
 • Age 8 – 10, but expressed in months (m=113.5);
 • 33 males, 39 females.

• Schools matched for
 • Low-risk;
 • High SES;
 • Urban environment;
 • No other official languages (like Frisian);
 • Cito scores.
STUDY

• Hours of English:
 • School 1, which teaches 4 hours of English weekly. We tested 32 students, 4 of which were left out due to missing or unusable data*.
 • School 2, which teaches 2 hours of English weekly. We tested 34 students, 10 of which were left out.
 • School 3, which teaches no English in groups 5 and 6 (control). We tested 31 students, 11 of which were left out.

*Technical problems, learning disabilities, etc.
Tools

• Raven intelligence test, power version:
 • 48 questions;
 • 20 minutes;
 • Score = total correct.

Example Raven exercise, from http://www.talentlens.nl
• **Peabody NL (language aptitude):**
 - Dutch words presented over headphone;
 - Subjects must click on matching picture out of 4;
 - Score = total correct;
 - Increasing difficulty;
 - Max score = 204.

Example Peabody NL exercise. Test developed by Pearson and software developed by Dr. Claire Stevenson, University of Leiden.
• Peabody EN (English vocabulary):
 • English words presented over headphone;
 • Subjects must click on matching picture out of 4;
 • Score = total correct;
 • Increasing difficulty;
 • Max score = 228.

Example Peabody EN exercise. Test developed by Pearson and software developed by Dr. Claire Stevenson, University of Leiden.
Peabody EN score$_i = (b_0 + b_1 \text{ hours}_i + b_2 \text{ aptitude}_i + b_3 \text{ age}_i + b_4 \text{ intelligence}_i) + \varepsilon_i$
SIMPLE REGRESSION

R Output

> englishSR <- lm(pben ~ hours, data=english)
> summary(englishSR)

Call:
 lm(formula = pben ~ hours, data = english)

Residuals:
 Min 1Q Median 3Q Max
-36.87 -25.34 -15.32 20.57 110.91

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.318 6.886 4.548 2.21e-05 ***
hours 4.388 2.505 1.752 0.0842 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 34.39 on 70 degrees of freedom
Multiple R-squared: 0.04199, Adjusted R-squared: 0.0283
F-statistic: 3.068 on 1 and 70 DF, p-value: 0.08424

Interpretation

- Hours of English explains only 4.2% of the variation in PBEN.
- Not significant.
MULTIPLE REGRESSION

R Output

```r
> englishMR<-lm(pben ~ hours + age + raven + pbnl, data=english)
> summary(englishMR)

Call:
  lm(formula = pben ~ hours + age + raven + pbnl, data = english)

Residuals:
  Min      1Q  Median      3Q     Max
-46.274 -15.792  -3.031  18.155  58.196

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  -275.7125    46.2748  -5.958 1.05e-07 ***
hours         -0.3710     2.2422  -0.165 0.869098
age           1.2612     0.3471   3.633 0.000543 ***
raven         1.2722     0.4780   2.661 0.009732 **
pbnl           1.4268     0.2486   5.739 2.51e-07 ***

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 25.55 on 67 degrees of freedom
Multiple R-squared:  0.4939,    Adjusted R-squared:  0.4637
F-statistic: 16.34 on 4 and 67 DF,  p-value: 2.172e-09
```

Interpretation

- Age, intelligence and aptitude account for an extra 45%.
- Adjusted R^2 is 3% less.
- Highly significant at $P < 0.001$.
INTERPRETATION

• As hours increases by one unit, PBEN decreases by 0.37 units (!)
 • However, the contribution of this variable to the model is highly insignificant at $P = 0.87$.
• As age increases by one unit, PBEN increases by 1.25 units.
 • Highly significant contribution at $P < 0.001$
• As intelligence increases by one unit, PBEN increases by 1.19 units.
 • Highly significant contribution at $P < 0.01$
• As aptitude increases by one unit, PBEN increases by 1.5 units.
 • Highly significant contribution at $P < 0.001$
R Output

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized B-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hours</td>
<td>-0.01732222</td>
</tr>
<tr>
<td>age</td>
<td>0.31904493</td>
</tr>
<tr>
<td>raven</td>
<td>0.27639488</td>
</tr>
<tr>
<td>pbnl</td>
<td>0.51697292</td>
</tr>
</tbody>
</table>

Interpretation

- **Number of SDs by which PBEN will change as each of the predictors changes by 1 SD (all other predictors being equal!).**
- **Directly comparable;**
- **Better insight into weight of each variable.**
CONFIDENCE INTERVALS

R Output

```
> confint(englishMR)
                 2.5 %       97.5 %
(Intercept)  -368.0773784  -183.347680
hours          -4.8464871     4.104587
age             0.5683334     1.954122
raven           0.3180700     2.226378
pbnl            0.9305210     1.923057
```

Interpretation

- The confidence bands for each of the predictors is small, except for hours.
- Hours crosses 0: sometimes the relationship is positive, sometimes negative.
- BAD.
COMPARING MODELS

R Output

```r
> anova(englishSR, englishMR)
Analysis of Variance Table

Model 1: pben ~ hours
Model 2: pben ~ hours + age + raven + pbnl

                   Res.Df     RSS    Df Sum of Sq      F  Pr(>F)
Model 1: pben ~ hours             70 82790
Model 2: pben ~ hours + age + raven + pbnl 67  43739  3     39051 19.94 2.40e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

Interpretation

- EnglishMR is a significantly better fit to the data compared to EnglishSR, $F(3, 67) = 19.94$, $p < 0.001$.

R Output

```r
> english$standardized.residuals <- rstandard(englishMR)
> english$large.residual <- english$standardized.residuals > 2 |
  english$standardized.residuals < -2
sum(english$large.residual)
[1] 3
> english[english$large.residual, c("pben", "age", "raven", "pbnl", "hours",
  "standardized.residuals")]
     pben age raven pbnl hours standardized.residuals
1     149 128    39 110   4             2.389620
48   151 117    41 121   2             2.285620
56    92 109    27  99   0             2.198725
```

Interpretation

- **Sample = 72**
- 95% of residuals should be within +/- 2 (SD).
- 5% should be outside.
- 5% of 72 = 3.6
- 3 or 4 outliers
- We have 3.
- Fine.
DIAGNOSTICS

R Output

```r
> english$cooks <- cooks.distance(englishMR)
> english$leverage <- hatvalues(englishMR)
> english$covariance <- covratio(englishMR)
> english[english$large.residual, c("cooks", "leverage", "covariance")]
```

<table>
<thead>
<tr>
<th></th>
<th>cooks</th>
<th>leverage</th>
<th>covariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11501253</td>
<td>0.09149260</td>
<td>0.7601336</td>
</tr>
<tr>
<td>48</td>
<td>0.12934210</td>
<td>0.11015771</td>
<td>0.8073542</td>
</tr>
<tr>
<td>56</td>
<td>0.05533664</td>
<td>0.05413405</td>
<td>0.7837935</td>
</tr>
</tbody>
</table>

Interpretation

- **Cook’s distance** should be < 1.
- **Leverage** should be < 2(k + 1/n);
 - 2(5/72) = 0.14
- **Covariance ratio**
 - CVRᵢ < 1 + [3(k + 1)/n]
 - CVRᵢ < 1 + [3(4 + 1)/72] = 1.08
 - CVRᵢ > 1 - [3(k + 1)/n]
 - CVRᵢ > 1 - [3(4 + 1)/72] = 0.79
- #1 is lowish, but see Cook’s distance.
> dwt(englishMR)
lag Autocorrelation D-W Statistic p-value
 1 0.07124528 1.778073 0.228
Alternative hypothesis: rho != 0

R Output

Interpretation

- Durbin-Watson tests assumption of independent errors.
- Should be close to 2 and not <1 or >3.
- Fine at 1.78.
NO MULTICOLLINEARITY

R Output

```r
> vif(englishMR)
hours  age  raven  pbnl
1.451289 1.020795 1.427768 1.074327

> 1/vif(englishMR)
hours  age  raven  pbnl
0.6890425 0.9796286 0.7003941 0.9308155

> mean(vif(englishMR))
[1] 1.243545
```

Interpretation

- **VIF to assess multicollinearity.**
- **Tolerance = 1/VIF.**
- **Largest VIF > 10 means problem.**
- **Mean VIF much > 1 means problem.**
- **Tolerance < 0.2 means potential problem.**
- **All fine.**
R Output

```r
> english$fitted <- englishMR$fitted.values
> scatterResiduals <- ggplot(english, aes(standardized.residuals, fitted))
> scatterResiduals <- scatterResiduals + geom_point() +
  geom_smooth(method="lm", colour="darkkhaki") + labs(x="Standardized Residuals", y="Fitted Values")
> scatterResiduals
```

Visualizing residuals
R Output

```R
> hist(english$studentized.residuals)
```
INTERPRETING RESIDUALS

- Some heteroscedasticity and non-linearity.
- Distribution of residuals seems normal.
CONCLUSION

• Assumption of homoscedasticity and linearity of residuals violated.
• Findings cannot be generalized beyond sample (yet).
• Options:
 • Logistic regression
 • Robust regression
CONCLUSION

• Hours of education does not predict PBEN score.
• Rather, a combination of age, intelligence and language aptitude does.
REFERENCES